
* Bolt Beranek and Newman Inc. n
IADA 0868 32

I Report No. 4458

I Quarterly Technical Report: TCP for the HP3000

II Jul. 1 8 980)

I Prepared for:
Defense Advanced Research Projects Agency

*80 7 16 043

1.1

QUARTERLY TECHNICAL REPORT:
TCP FOR THE HP3000

May 1980

This research was supported by the Defense Advanced Research
Projects Agency under the following contract: MDA904-80-C-0214

Submitted to:

Director
- Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, VA 22209

Attention: MIS

1 The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S.
Government.

UNCLASSIFIED
$11CUNV CLASUPgCAIgu or Two$ PA~G ~'m SDon . ______________

REPRT OOMENTATIOI PAGE sarong gammann por

g! uarerx ?6chnica reW4 '
CP for the HP3060 4'r---------12)9t04//8

R. D. Bressler I MA0-6C0

10 Wulon Bl., arigt, A 022298

Rm. 1D 245, The Pentagon UNCLASSIFIED______

Washington, DC 20310 M.,s OtUPII4CAIOOWNGOIN

19. 01ITUION STAIEUKM (of W. Repm)

APPROVED FOR PUBLIC RELEASE/DISTRIBUTION UNLIMITED

IT. DISRIOUTI@N STAlIUN(o e &65" toes ib IS.N. II 0ht nho"")

ISUPPLCUNNARNT1

Transmission Control Protocols (TCP), HP3000, ARPANET

2L ASSTRACT (Camwtin do oerwas sie. of mooee.mp #~6~t &P' W~ek o.ni

This Quarterly Technical Report Covers one phase of an ongoing
research effort to implement TCP protocols on an HP3000 computer system.

ss U~CLAIIEDWo is~cCu

UNCLASSIFIED
2Frn mTY wriPcAw. or Thess PAos twUa Dwe Eiw*

UNCLASSIFIED -

KECD a leASIP loI@ OP THIs P~aS u. m

1=
Report No. 4458 Bolt Beranek and Newman Inc.

Table of Contents

2 Current HP3000 Structureoe.......................... 1
3 Process State Nanipulation..... oo... 2

I4 Network interface Hardware............... o....... 3
5 Operating System Software............................. 4
6 Input/Output.................. *6* **eeooo 6
7 Interprocess Communication............................ 7j 8 Existing INP Software.. 10

110
eve

'D

Report No. 4458 Bolt Beranek and Newman Inc.

1 Introduction

This QTR covers one phase of an ongoing research effort to

implement TCP protocols on an HP3000 computer system. The phase

of the work covered in this report is an analysis of the HP3000

computer and its MPE operating system. The analysis places

special emphasis on the elements of the operating system which

will directly affect the implementation of network protocol

software.

2 Current HP3000 Structure

The HP3000 CPU is a medium speed machine which uses a stack

architecture. It executes uncomplicated instructions in one to

two microseconds. Code and data are separate and thus all code

* is re-entrant. There are approximately 38 hardware registers

which make up the state of the processor, most of which are

.-associated with the stack (data) and the current instruction

address (code).

Memory is divided into segments. A segment is a contiguous

block of memory of any desired length up to 32K words.

Individual segments are swapped in and out of memory as needed.

Memory paging, a scheme which uses fixed size memory chunks as

I the basis for memory swapping, is not used in the HP3000. A

1segment may be designated as code or data by the operating

I -1-_____

Report No. 4458 Bolt Beranek and Newman Inc.

systemo

3 Process State Manipulation

The processor state contains pointers to the beginning and

end of the code and data segments. In a programr which may

consist of more than one code segmentr the fastest type of

procedure call is a call within the same code segment -- a

procedure frame is pushed onto the stack, but no change need be

made to the code segment descriptors. A procedure call into a

different code segment is more expensive because the CPU must

pick up the new segment number and offset from the linkage area

of the current code segment and then change the segment

descriptor registers to redefine the current code segment. In

addition, if the new code segment is not currently swapped into

memory, the process must be suspended until the segment is

available. Similarly, when the called procedure returns, the

calling segment may have been swapped out, and again the process

might have to be suspended./

An important side effect of a procedure call into another

segment is that the new segment may specify that it is to be run

in privileged mode. Calling a procedure inside such a segment

would place the calling process in privileged mode until the

called procedure returned. This technique is used to effect

system calls in the MP: operating system because it was felt this 7

-2-

'II

Report No. 4458 Bolt Beranek and Newman Inc.

would be more efficient than a process context switch.

Switching from one process to another requires saving all 38

hardware registers of the current process, loading the registers

for the new process, and insuring that both the code and data

segments needed by the new process are present in memory. It

also involves running the process scheduler in the operating

system. For comparison, this is considerably slower than a

procedure call between code segments when the new code segment is

present in memory, though about the same if the new code segment

is not in memory. Furthermore, any program function that

requires switching process contexts must recognize that, in a

multiprogramming operating system, waking up a process does not

-guarantee that the awakened process will be the next process

scheduled to run.

4 Network Interface Hardware

The interface unit between the HP3000 computer and the

ARPANET machines will be HP's Intelligent Network Processor

-* (IMP). This device consists of two boards located in the HP 3000

main cabinet. It is a microprogrammed interface unit whose

microcode is down-line loaded by HP 3000 software. HP will

- supply the microcode to make the INP obey the X.25 LAP protocol

and will supply the device driver necessary to access the INP.

I -3-

Report No. 4458 Bolt Beranek and Newman Inc.

The INP will be connected to a BBN C30 (MBB) computer. This

machine will convert the X.25 protocols from the INP into

suitable ARPANET protocols.

5 Operating System Software

The operating system for the HP 3000 is known as the

Multiprogramming Executive System (MPE). It offers both batch

and interactive job capabilities and allows multiple concurrent

users of either type. It offers a file system which manages

files on disk, magnetic tape and/or punched cards. Some I/O

devices, such as the line printer, have spooler programs built in

to the system.

User programs are run as processes within MPE. Each process

has associated with it a code segment and a stack (data) segment.

In privileged mode, it may run in "split-stack mode", where it is

allowed to have two data segments. The most common use of

split-stack mode is to access tables in the operating system

during system calls (known as Intrinsics; see below).

The design of MPE is greatly influenced by the HP3000

hardware architecture. MPE's organization heavily relies on

operations which incur little processor overhead while avoiding

operations which incur large amounts of processor overhead. The

most striking example of this is the NPE's dependence on user

~~-4- .

Report No. 4458 Bolt Beranek and Newman Inc.

processes for a large number of what would ordinarily be

considered systems functions. MPE avoids the use of "systems"

processes to perform these systems functions.

This design organization is a direct result of the stack

architecture of the HP3000. The large number of status registers

which must be saved when a new process is invoked makes process

switching a very expensive operation. The time needed to perform

a procedure call into a new segment of system code is typically

less than the time to switch context from one process to another.

Writing efficient code for this machine has thus led to

organizing the system as relatively independent "utility"

routines callable by the user rather than as a collection of

separate processes which manage I/O devices and system utilities.

These operating systems calls, called Intrinsics, are implemented

as subroutine calls into system code segments. The Intrinsics

use the split stack mode to separate the operating system

functions from the user's program. The program segments which

j implement the Intrinsics run in a privileged mode which allows

them to directly access system tables and I/O device tables.

One notable side-effect of this design is that system

resources such as I/O devices are assigned to only a single

program and are not normally shared. This approach has allowed

the systems programmers to create a complex operating system

without tackling the problems of interprocess communication and

-5

Report No. 4458 Bolt Beranek and Newman Inc.

resource sharing. As will be discussed later, it also has a

significant effect on protocol software design.

6 Input/Output

Input/Output operations are typically a two step operation.

The first step is initiation of the desired operation. This

involves checking to insure that access to the device is allowed

(software protection), and issuing I/O instructions to the device

to initiate the desired action. This step usually occurs as a

result of an intrinsic call to the device handler code and thus

is executed on the user's stack. The second step is the

operation completion handling. This may occur using either the

Interrupt Control Stack (ICS) or the System Control Stack,

neither of which is the user's stack. The choice of which stack

to use depends on the specific device's function.

A consequence of this system design is that "system code"

tends to be executed using the data stack of the first user

process needing the function. If process 1 wants to do an I/O

operation, it invokes a system procedure which knows how to

manage that I/O device. If now process 2 wishes to invoke the

same device, and if the device is capable of supporting more than

one request concurrently, it invokes the same routine. To avoid

multiprocessing hazards in issuing I/O commands, the system

procedure first checks to see if it is the first invocation of

-6

Report No. 4458 Bolt Beranek and Newman Inc.

itself -- if not, it queues the request and exits; if it is, it

proceeds to issue the I/O instructionz. If the request was

queued, it is assumed that the first process will detect the

newly queued request and process it also. The first process is

thus performing system functions for the second, and all later,

processes, and will be charged run time for doing their work. In

practice, we do not expect this to be significant, but in theory,

the first process could run indefinitely, even if its own request

has long since completed.

7 Interprocess Communication

Interprocess communication under the current version of MPE

is a problem. One technique that may be used is that of the

logical device. This is employed chiefly to accomplish

multiplexing of physical devices. The facility is implemented by

creating a new entry in the system's Device Information Table,

and by creating a set of procedures to be the "device handler".

The handler will be run in privileged mode.

jLike other system device handlers, the procedures to manage

the device are invoked directly by the user process, and the

user's stack is used by the system code. This has the advantage

of speed, since it avoids some process context switching.

-
I -7-

Report No. 4458 Bolt Beranek and Newman Inc.

There are a number of drawbacks to this technique. First,

the Device Information Table entry must be maintained as if it

were a real hardware device. This requires knowledge of all the

MPE internal functions that might access this table.

Furthermore, since these tables are system internal, they are

subject to change with each new release of MPE. Use of the table

requires Priviliged Mode. Bugs in the code would have a greater

chance .of crashing the system. The greatest drawback is that

logical devices are still under development at HP, and are more

than usually likely to change over time.

A new operating system feature, not yet released officially,

that has been written for MPE is an interprocess communication

method known at HP as message files. These correspond to Unix

ports, and allow unrelated processes to communicate with one

another. Each message file has one or more "reader" processes

and one or more "writer" processes. During use, these files act

as FIFO queues. If a reader finds the queue empty, it is hung

until something is written into the file. If a writer finds the

queue full, it will hang until a reader appears. Both reader and

writer may specify a timeout on how long they will wait if hung.

Message files are implemented using the file system. Read,

write, and query commands are all patterned after the file system

commands. The message file code is designed so that if readers

and writers stay more or less in synchronization, disk I/O will

-8-

Report No. 4458 Bolt Beranek and Newman Inc.

not be needed. However, if the writers get far enough ahead of

the readers, the message file will start being spooled out onto

disk.

Message files are to be introduced as user level functions

by HP, and, as such, their use will not change with new releases

of the operating system. Code for this feature has already been

implemented at HP and is available with both MPE III and the

future MPE IV. They appear to be relatively easy to use and do

not require knowledge of the internals of the operating system.

Their chief drawbacks are that a process context switch is

required between writer and reader, and that some file system

overhead is incurred.

. Timeouts, as seen in message files, are another new HP

function that will be available. The older version of timeouts

simply suspended the process for a fixed amount of time, but did

not allow the process to be awakened by the completion of an I/0

event during its sleep. The new version is equivalent to setting

a timer whose alarm may be awaited with the same IOWAIT Intrinsic

that awaits I/O completion. It allows a process to wait for

either some I/O device operation completion or the passage of

isome maximum amount of time, whichever occurs first.

Alternatively, a timeout could be used to insure that waiting for

I a specific event will terminate if the expected event does occur

i soon enough. There will be both user level and system internal

I -9-

Report No. 4458 Bolt Beranek and Newman Inc.

ways of accomplishing timeouts.

8 Existing INP Software

The code to drive the INP is part of the CS/3000

Communications Software package from HP. It contains code to

send and receive packets via the INP and code to manipulate the

Device Information Tables. The code also allows the user to

down-line load microcode into the INP memory. It contains

Intrinsics to open and close the line and to read and write

packets. The microcode makes the INP be an X.25 LAP, as opposed

to LAP B, interface. It also allows the INP to buffer up to

eight 128-byte packets. These packets are read by CS/3000 as

soon as possible to keep the INP from losing packets for lack of

buffer space in the INP. This technique allows the INP to

function as a full duplex device, even though the MPE operating

system offers only a half duplex control mechanism in its

software.

-10-

Report No. 4458 Bolt Beranek and Newman Inc.

* DISTRIBUTION

mA
* Director (3 copies)

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209
Attn: Program Manager

V. Cerf
R. Collison

DEPENsO nnCuunzm ENTA~n R (2 RpRa
Cameron Station
Alexandria, VA 22314

BOLZT RPANPK MMf NEWNAN IC
50 Moulton Street
Cambridge, MA 02138

1R. Bese
J. Sax
W.Edmond

J. Haverty

Librar

R.Bok
Lirr

K -

Report No. 4458 Bolt Beranek and Newman Inc.

I

I.
-12- Ii

-~ I

